## CORFIT ${ }^{\circ}$

Underground Double Wall Corrugated Pipes


## A Revolution in

India's Piping System



Salient Features of HDPE Material
High Density Polyethylene (HDPE) is a polymer material that is durable, strong and corrosion resistant.


LGHTwEIGHT



Why use Corfit?
Currently, pipes that are widely used for
made of RCC \& Stoneware (Clay Pipes).
Due to their rigid nature, when embedded, these pipes experience severe stress because of the earth
pressure \& dynamic load which results in cracks and leads to system failure. In extreme cases, the pipe $m$ may collapse.
RCC or Stoneware pipes are generally available in 2 metre length thereby leading to more number of joints.
As these pipes are heavy, during installation machines are reauired to lift \& lay which is cumbersome.
As these pipes are heavy, during installation machines are required to lift \& lay which is cumbersome.
In comparison to these pipes, Corfit DWC* Pipes are the ideal solution which addresses the main concerns
of the underground drainage systems. We have enlisted some of the features here -
of the underground drainage systems. We have enlisted some of the features here

## Features of Corfit DWC* Pipes



Material
Only the best and top notch materials are chosen for our products.
An experienced team of experts ensure we always deliver the best.
Maintenance
Excellence in service is a hab
we strictly follow every time.

| Parameters | DWC (HDPE Double-wall Corrugated) Pipes | RCC Pipes |
| :---: | :---: | :---: |
| Length of pipes available | 6.0 m | 2.0-2.5 m |
| Pipe diameters available | $100-1000 \mathrm{~mm}$ | $150-1000 \mathrm{~mm}$ |
| Pipe material property | Flexible pipe | Rigid pipe |
| Pipe design (structural property) | Due to its flexibility it allows deformation in diameter as well as in joints under external load and soil natural movement and hence operates years after years without affecting the environment | Due to its rigid nature it could not deform and hence gets damaged under external load or leaks due to natural soil movement at joint. Sewer water could also leach in ground water harming the environment |
| Pipe jointing | Socket \& Spigot joint with elastomeric sealing ring | 1. Coller joint with help of cement morter 2. Socket \& Spigot joint with rubber ring and cement morter |
| Pipe weight | Very light | Heary (19-20 times heary than DWC* pipes) |
| Pipe roughness coefficient | 0.009 Much higher flow rate due to less roughness coefficient and hence during design, pipe diamete requirement is less as compared to concrete \& DI pipes | 0.014 Lesser flow rate due to more roughness coefficient and hence during designing, pipe diameter requirement will be higher than DWC* pipe |
| Handling of pipe | Easy due to its light weight | Difficult due to its heary weight |
| Corrosion resistance | Highly corrosion resistance | Not resistant to Hydrogen Sulfide gas which is present in all sewer pipes, hence Sulphate resistant cement is used during manufacture |
| Installation | Good flexibility, low requirements for foundation base for laying, good bending | High rigidity, high requirement for foundation base for laying, not easy to handle \& bend, difficult to connect with other pipe |
| Pipe class | Stiffness class SN 4, SN 8 (Non-Internal Pressure Applications) | NP 1, NP 2, NP 3, NP 4 (Non-Internal Pressure Applications) |
| Pipe stacking on site | Stacked on plain ground. Smaller diameter pipes can be nested in bigger diameter pipes | Stacked on plain ground seperately. Can not be nested due to its heavy weight |
| Pipe handling on field | Light weight hence safe in manual handling, has high impact resistance and is non-breakable due to miss handling | Heavy weight hence poor safety during handling, may lead to damage due to mishandling |
| Working features | High safety under buried instalation | Low safety under burried installation |
| Life time | More than 50 years | Around 15-20 years |

# Application of Corfit DWC* Pipes 

Corfit DWC* Pipes are used for underground applications such as


Life time More than 50 years

## Fittings




Bend


Pipe Dimensions
9

| Sizes $(m)$ ) | 100 | 150 | 170 | 200 | 250 | 300 | 400 | 500 | 600 | 800 | 1000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Socket Length $(\mathrm{mm})$ | 32 | 43 | 48 | 54 | 59 | 64 | 74 | 85 | 96 | 118 | 140 |

## Handling Recommendations

To avoid damage to the pipe and fitings adhere to the following
handling recommendations:

- 100 mm to 400 mm pipes can be moved by labourers (handheld)
- 500 mm to 800 mm pipes can be moved using a backhoe with a nyloon sling
- 1000 mm pipes a sling a two points spaced at an approximate
distance of 1 Oft should be used


## 

## - Contractor assistance is required to unload pipe

- Do not use a loading boom or forklift directly on or inside the pipe


## Transportation

Do's

- A flat bodied vehicle is ideal for transporting pipes

L Layer of pipes with integral socket should be placed with
socket protruding alternately

- While stacking pipes ensure that higher diameter pipes are
placed at the boottom - While stacking pipes es
placed at the bottom
- Use nylon sling / cushioned cable while loading / unloading
from trucks, shifting and lowering in trenches at the site
- Alternate bells should be kept on each row to support the
length of pipes evenly
- While liting a pipe, the nylon sling/ cushioned wire should be
wrapped on center $1 / 3$ rdd portion of pipe

Don'ts
Pipes should not overhang / hang outside the vehicle body
Maximum height while loading should not exceed 2.5 metres

## 

Receiving Recommendations



- Examine load quantities and quality immediately after unloading.
Inspect pipe carefully for possible damage during transportation or Inspect pipe carefully for possible damage during transportation
unloading unloading
Make a note of damaged or missing items on delivery receipt Do not dispose of damaged items. Check with driver for proper return
method. If the driver is unsure, contact our sales team

Pipe Storage
Storage Recommendations
To ensure that your delivered pipe products do not become
damaged during job site storage, follow these simple guidelines:

- Pipes may be stockpiled on a flat and clear area
- Use securing timbers (or blocks) to ensure the stockpile does not
collapse
- Failure to block pipe may result in stack collapsing, pipe damage,
or personal iniury
- Fr personal injury
- Ensure that the pipe stack is not higher than approximately
6 feet $(1.8 \mathrm{~m})$
$\square$
- Alternate bells for each row should be kept to support the pipe
length evenly


## =

- Do not drag or strike pipe ends while moving the pipe to prevent
damage to the bell or spigot
damage to the bell or spigot

Installation of DWC* Pipes
Trench Preparation
Sewer Trench width depends on the soil
condition, tye o f side protection and the
working space equired at th bottom ot the
trench for so smoth installations. Considering


| S. <br> No | Pipe Diameter <br> $(\mathbf{m m})$ | Trench Width <br> $(\mathrm{m} r$ rl |
| :---: | :---: | :---: |
| 1 | 7 to 200 | 0.6 |
| 2 | 250 | 0.7 |
| 3 | 300 | 0.8 |
| 4 | 400 | 0.9 |
| 5 | 600 | 1.2 |
| 6 | 800 | 1.3 |
| 7 | 900 | 1.6 |
| 8 | 1000 | 1.8 |



The trench depth should be minimum 1.5 mtr onwards


## Excavation

Sewer trenches should be in straight lines as much as possible

- Instead of conventional manholes, DWC* fittings such as tees and
bends should be used at transitions
Excavated spoils should not be deposited in the proximity to
prevent the collapse of the side of the trenches
The sides of the trench should be supported by shoring (wherever hecessary) to ensure proper and speedy excavations and concurrently ensuring necessary protection to contiguous structures Dewatering: Sewer installations in trenches should be adequately pipe is integrated through socket and spigot joint with the already laid segment


## Bedding

For maximum combined loading (Wheel Load + Backfill) any form of cement, concrete structural bedding would not be necessary
-For maintenance of sewer slopes the initial backfill should be enveloped with sand or gravel (as computed through structural design of buried flexible conduit) over a single BFS (Brick Flat
Soling)

## Laying

For shallow trenches, place the pipe manually on the initial backfill
envelop, directly

- For deep trenches with shoring / mild steel sheet piling
a) Make the trench reasonably free from ground water and
b) Place the pipe on the top level cross-struts of the timber shoring / mild steel sheet piling framewor
c) Dismantle one / two cross struts and lower layer of the cross-struts and re-fix the struts immediately
d) In the same manner, reach up to the intial back filing and
ce the pipe at proper slope
e) Ensure anchorage, if any, after laying


## Jointing Procedure

DWC* pipes are manufactured with built in socket / bell.
Clean the surface of the spigot socket using a cloth

## 

Insert the rubber ring on the spigot end in between first
corrugated valley
Carefuly insert the
following steps
+
(a) Jointing Jack Method

- Properly connect the jointing jack which is in two halves on
DWC ${ }^{\text {pipe corrugation on socketed and spigot end of pipes }}$


Insert the rubber ring fitted spigot end of the pipe inside the
socket of the jointing jack

- The entire jointing process only takes a few minutes and a
leak-proof joint is achieved


## (b) Rope Method

Rope to be tied at appropriate distance from the spigot end of
the pipe to get enough force for pulling the pipe Rope to be tied a appropriate distance from the
the pipe to get enough force for pulling the pipe
$\square$

- Pull the rope tightly so that the spigot end can smoothly go into Jointing can be co
leak-proof joint

Construction of Backfill Envelope and Backfilling of the Trenches

- The material for initial backill envelope should be as per the
structural design of the flexible buried conduit
- It can be the same material that was removed during excavation orit can be fine sand / coarse sand / gravel depending on the over burden and superimposed load, but rigidity in the system
-The remaining portion of backfilling should be the materia that was removed during excavation
These materials should consist of clean earth and should not be from large clod or stone above 75 mm , ashes, refuse and ther injurious materials
Backiling should start only after ensuring the wate tightness
test of joints for the concerned sewur segments est of oints or the concermed sewer segments. Howe

Our Network of
Global Success


Service Life
Corfit DWC* Pipes have a very long servic life, the wear and tear of the inner wall is very low due to the high abrasion resistance
of HDPE material.

Under normal working conditions the life expectancy of these pipes is more than 50 years.

Corfit DWC* Pipes are reliable and durab which make these pipes suitable for long erm drainage and sewerage application


